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Abstract Crowds moving through bottlenecks form a dynamical system, with its density fluctuating
in time and space. The system dynamics can be learned and predicted using the Koopman operator
framework. But how reliable are predictions for previously unseen situations? How significant is the
impact of stochastic observations? In this work, we show that using Taken’s embedding and diffusion
maps as part of our learning pipeline facilitates robustness of the surrogate model.
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Koopman surrogate models for crowds in a bottleneck

Modeling and predicting the behavior of pedestrian flows during evacuation, especially in constrained
environments such as bottlenecks, is crucial for improving public safety. However, to effectively support
practitioners in their decision making, models must provide reliable predictions even for unseen situations.

This work investigates the robustness of the Koopman operator, a promising Al technique suitable
for predicting the behavior of various dynamical systems [I]. In the context of pedestrian dynamics at
a bottleneck, a Koopman surrogate model may allow us to forecast potentially critical levels of density
upfront. Training such a surrogate model can use various learning pipelines, including the Dynamic Mode
Decomposition (DMD) [2] or the Extended Dynamic Mode Decomposition (EDMD) [3]. While DMD is
designed to predict only linear dynamics, EDMD allows to include non-linear transformations such as
Taken’s embedding [4] or diffusion maps [5].

Given the great flexibility of the learning pipeline, this work focuses on the following question: How
does using techniques such as Taken’s embedding and diffusion maps enhance the robustness of Koopman
surrogate models? Here, robustness refers to the model’s ability to accurately predict unseen data vari-
ants, in particular: (1) Unseen crowd sizes in pedestrian inflow, being larger, smaller or between crowd
sizes present in the training data, and (2) unseen stochastic observations, containing trajectory-induced
noise which is not present in the training data.

Taken’s temporal embedding enriches the state space of a dynamical system by adding past snapshots
to each observation. We expect that this additional information supports inter- and extrapolation. Dif-
fusion maps on the other hand are a dimensionality reduction technique. They learn a low-dimensional
embedding via a diffusion process which aims to preserves essential geometric structures of the data.
Overall, reducing the dimensionality increases computational efficiency; in extreme cases, this makes
working with large temporal embeddings tractable at all.

Experiments on surrogate model robustness

We simulate the crowd dynamics at a bottleneck using the microscopic simulator Vadere [6]. All virtual
pedestrians want to exit through a single bottleneck simultaneously. We generate data for seven crowd
sizes, from 10 to 70 people, creating varying density patterns. For each size, we generate two time series:
one average of 50 simulations, and one stochastic from a single run. The data is discretized into a spatial
grid of 20cm x 20cm cells, leading to 55 x 40 = 2200 cells per snapshot, with snapshots taken every 0.2
seconds.

To analyze surrogate model robustness, we use three learning pipelines. The first employs the classical
Dynamic Mode Decomposition (DMD). The second integrates Taken’s embedding, adding four frames to
each state. In the third and most advanced pipeline, the Taken’s embedding is followed by diffusion maps
which embed the enriched observations into a lower dimensional state space. This learning approach was
previously suggested in [7].
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Figure 1: Graphical abstract, showcasing the improvements in prediction accuracy for two exemplary
time series from the training data set.

Starting from pure DMD, which leads to infeasible predictions especially for stochastic time series,
our experiments show significantly better predictions for the two EDMD learning pipelines. Here, we can
largely attribute the main improvements in robustness to using Taken’s embedding. At the same time,
diffusion maps are able to reduce the dimensionality by a factor of 100, while maintaining the prediction
accuracy achieved with Taken’s embedding alone. Such a reduction becomes inevitable once we need
to increase the amount of training data, increase the spatial resolution, or add more snapshots to the
temporal embedding to capture more complex dynamics.

In summary, our comparative analysis shows that using Taken’s embedding and diffusion maps sig-
nificancy improves the accuracy in predictions for unseen crows sizes and stochastic observations while
keeping the problem computationally tractable. Further investigations will also incorporate data from
laboratory experiments as the stochastic time series.
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