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Abstract In this contribution, we use simulations to explore lane and stripe formation in pedestrian
dynamics using a stochastic port-Hamiltonian system. Our approach is minimalist, enabling identification
of fundamental modelling components and paving the way for further theoretical investigations.
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Extended abstract
The modelling of pedestrian dynamics is of great interest in safety, traffic, and civil engineering. Typical
applications include simulation-based design and evacuation planning of complex infrastructures (such
as train stations or stadiums) or the organisation of large public events (such as festivals or demonstra-
tions). Pedestrian dynamics are mainly governed by local and nonlinear interaction mechanisms. Besides,
pedestrian crowds are complex systems that describe self-organising phenomena [7]. For instance, when
pedestrians move in opposite directions, they naturally form lanes to accommodate counter flows; while
for cross flows, where they move in directions perpendicular to each other, they form stripes. Modelling
and analysing the collective behaviour based on pedestrian interaction is not straightforward.

Port-Hamiltonian systems are well established modelling approaches of nonlinear physical systems [9].
The port-Hamiltonian modelling approach, which decomposes the dynamics into skew-symmetric terms,
dissipation, input, and output is a meaningful representation of many systems. Interacting particle
systems and pedestrian dynamics have also been modelled using port-Hamiltonian frameworks [5, 8].

In this contribution, we explore the dynamics of lane and stripe formation by simulation using stochas-
tic port-Hamiltonian systems. The modelling approach is minimalistic and paves the way for further
theoretical investigations. The pedestrian model is a stochastic formulation of a simplified (isotropic)
social force model [2] given by dqn(t) = pn(t) dt,

dpn(t) = γ
(
un − pn

)
dt+

N∑
m=1

∇U
(
qm − qn

)
dt+ σ dWn(t),

(1)

where q = (qn)
N
n=1 ∈ R2N and p = (pn)

N
n=1 ∈ R2N are the positions and velocities of the pedestrians,

γ ≥ 0 is the relaxation (dissipation) rate, un ∈ R2 is the desired velocity, U(x) = ab exp
(
−|x|/b

)
, a ≥ 0,

b > 0, is a short-range repulsive potential on the distance, Wn are standard Wiener process and σ is the
noise volatility. The Hamiltonian of the system is

H(z) =
1

2

N∑
n=1

p⊤n pn +
1

2

N∑
n=1

N∑
m=1

U(qm − qn), (2)

where z = [q, p]⊤ describes the system state. The port-Hamiltonian formulation of the system is given
by [8, 3]

dz(t) =

[
0 IN

−IN −γIN

]
∇H

(
z(t)

)
dt+

[
0

γIN

]
udt+

[
0

σIN

]
dW (t), (3)

where u = (u1, . . . , uN )⊤ ∈ R2N . Different parameter settings lead to the formation of various patterns. If
γ = 0, the deterministic system with σ = 0 is a strictly Hamiltonian colloid where the energy is conserved
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(i.e. the Hamiltonian is constant), while the stochastic system accumulates the energy provided by the
noise and diverges. Assume γ > 0 while a = 0, then the pedestrians no longer interact and the system
is dissipative. Assume γ, a > 0 and un = 0 for all n ∈ {1, . . . , N}, then the system is Hamiltonian-
dissipative with stable deterministic crystallisation dynamics. In fact, the self-organization of lanes and
stripes observed in pedestrian dynamics requires all port-Hamiltonian components and additionally a
high relaxation rate γ and a low noise volatility σ.

In [8], a phase transition from disorder to collective phenomenon occurs in a deterministic framework as
the input control parameter γ increases. In preliminary simulation results, we recover a comparable phase
transition in the stochastic framework by increasing the noise volatility (see Fig. 1). This phenomenon
is known in the literature as the freezing by heating effect [1]. Similar behaviour is observed for random
initial conditions and for systems initially organised in lanes. This suggests that the system has a unique
stationary distribution for a wide range of initial conditions. In contrast, further simulation results show
that a noise-induced ordering effect [4] arises for stripe formation in 90 degree cross flow for low noise
volatility.
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Figure 1: Mean lane formation order parameter Φ for noise volatilities ranging from 0 to 1 in 0.05 steps
in a counterflow experiment where un = (−1, 0) for half of the pedestrians while um = (1, 0) for the
remaining pedestrians with γ = 1 (left panel) and γ = 2 (right panel). A phase transition occurs as the
noise volatility increases. The lower the dissipation rate, the earlier the transition. Simulation results
obtained using a leapfrog Maruyama scheme with time step δt = 0.01. The order parameter is averaged
over 20 time units after a simulation time of 200 with an 11× 5 periodic system with 32 pedestrians and
where a = 5 and b = 0.3. The results are averaged over 100 simulations for each value of σ. The order
parameter for lane formation is given by Φ = 1

N

∑N
n=1 ϕn with ϕn =

[
(Ln − Ln)/(Ln + Ln)

]2 where
Ln = card

(
m, |yn − ym| < 1/2, un = um

)
while Ln = card

(
m, |yn − ym| < 1/2, un ̸= um

)
[6].
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