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Abstract

Accurate forecasting of visitor crowd count enables crowd safety managers, municipal authorities, and
organizers to anticipate potential risks, deploy personnel strategically, and implement timely interven-
tions. Using the case study at Scheveningen beach, Netherlands, we propose a probabilistic approach,
using Conformalized Quantile Regression (CQR) to generate reliable uncertainty prediction intervals for
the 14-day hourly forecast. Compared to the quantile regression method, CQR offers better coverage
reliability. Our study improves uncertainty quantification of crowd forecasting, supporting crowd man-
agement in a dynamic beach environment
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Problem Statement and Objectives

Effective crowd management is critical for ensuring safety, optimizing resources, and enhancing visitor
experiences. Accurate and reliable crowd forecasting is integral to the success of crowd management.
For example, a 14-day hourly forecast provides valuable information for mid-term planning at tourist
destinations such as Scheveningen Beach, Netherlands. Over this time frame, crowd safety managers
need reliable staffing, logistics, security arrangements, and resource procurement estimates. In addition
to improving forecasting accuracy, quantifying the uncertainty of predictions has garnered increasing
attention from researchers and practitioners as it enhances the reliability and explainability of forecasting
outcomes.

Traditional forecasting methods (e.g., linear or autoregressive models) often fail to capture these
dynamics and struggle with reliable uncertainty estimation. Probabilistic forecasting methods such as
Quantile Regression (QR) and bootstrapped residual approaches face limitations in extrapolation and
computational efficiency [I]. To overcome these issues, this study applies Conformalized Quantile Re-
gression (CQR), a distribution-free probabilistic approach providing robust uncertainty quantification, to
generate reliable 14-day hourly crowd forecasts [2]. Our objectives are to evaluate CQR’s performance
against standard methods (QR and bootstrapping) regarding prediction interval coverage, interval width,
and computational feasibility, specifically to enhance planning and risk mitigation at Scheveningen Beach,
Netherlands.

Methodology

A time-stamped dataset, comprising historical visitor counts, weather features (e.g., temperature, rainfall,
wind), and calendar variables, was chronologically split (80:15:5) into training, calibration, and testing
sets. We trained XGBoost and Light GBM models and their quantile versions (10th and 90th quantiles)
using grid-search tuning to minimize errors on the training set. As baselines for uncertainty, we employed
(i) Quantile Regression (QR), directly producing upper/lower bounds, and (ii) a bootstrapped residual
approach, sampling from past residuals to approximate prediction intervals. CQR. further refined the
quantile estimates: residuals from the calibration set were used to derive non-conformity scores and
adjust interval widths, ensuring empirical coverage at the desired nominal level. Finally, performance on
the test set was evaluated using Mean Interval Coverage (MIC), Mean Interval Width (MIW), and the
Mean Interval Winkler Score (MIWS).
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Table 1: Performance metrics for different uncertainty estimation methods applied to XGBoost and
Light GBM forecasting models with prediction interval 0.10-0.90 quantiles

Methods XGBoost LightGBM
80% Prediction Interval Mean Mean Mean Interval Mean Mean Mean Interval
(10th - 90th Quantile) Interval Coverage | Interval Width | Winkler Score | Interval Coverage | Interval Width | Winkler Score
Bootstrapped Residual 0.67 1317.8 2610.4 0.72 1418.41 2435.70
Quantile Regression 0.80 1601.76 2637.27 0.81 1439.26 2415.87
Conformal Prediction 0.81 2052.40 3558.24 0.87 2075.12 3423.75
Conformalized Quantile Regression 0.83 1438.69 2561.92 0.87 1401.38 2312.28

Results and Discussion

Our results (Table Figure demonstrate clear advantages of Conformalized Quantile Regression
(CQR) for crowd forecasting at Scheveningen Beach. The MIC evaluates how frequently actual visitor
counts fall within predicted intervals (target coverage of 0.80), MIW measures interval precision (nar-
rower is better), and MIWS assesses overall prediction quality (lower scores indicate higher accuracy and
precision). Based on these metrics, the bootstrapped residual method underestimated prediction un-
certainty, showing coverage below the desired 0.80, potentially causing inadequate preparedness during
unexpected visitor increases. Naive Quantile Regression and standard Conformal Prediction methods
generated overly broad intervals, indicated by larger interval widths and higher MIWS, making precise
resource planning difficult. Figure [T] shows clear visitor peaks, representing periods of significantly in-
creased attendance. CQR effectively captures these peaks with narrower intervals and meets the desired
metrics (e.g., the peak on 2023.11.11), enabling managers to anticipate high-attendance periods and to
make informed decisions about resource allocation, risk mitigation, and strategic planning.
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Figure 1: Comparison of 14-Day visitor crowd forecasts with different uncertainty estimation
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