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Variational Modeling for paths through static crowds
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Abstract We use variational modeling to quantitatively predict the path of an intruder undergoing
the N-to-1 interaction while crossing a static crowd. Leveraging large-scale real-life data from Eindhoven
Centraal Station, NL, we learn a cost model that stochastically generates trajectories over a discretized
domain.
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Figure 1: A: Examples of instances of N-to-1 interaction for different sizes of static crowd. Blue dots
represent static pedestrians and orange curves represent intruder trajectories. B: Corresponding discrete
cost landscapes with original trajectories in orange and stochastically generated trajectories in pink.

The interactions between individuals in a crowd are a major driver of crowd dynamics. In this work,
our aim is to develop quantitative, stochastic models for a key type of interaction, which we call the
N-to-1 interaction, where an intruder moves through a crowd of stationary pedestrians. Most prior
efforts have focused on analyzing laboratory data [1, 2], which is constrained by limited sample size
and may not accurately reflect real-world conditions. In contrast, we leverage large-scale, real-life data,
which enables us to better understand and quantify the inherent stochasticity in path choice. Empirical
evidence suggests that most pedestrians seek to minimize discomfort by avoiding excessive proximity
to others while simultaneously reducing effort by choosing shorter, straighter paths [3]. To capture this
trade-off, various models for ‘rational pedestrians’ have been proposed, where pedestrians optimize utility
[4]. In these models the pedestrians walk by minimizing a cost function that accounts for factors such
as proximity to others, total path length, anticipation of others’ movements, etc. [5]. However, without
real-life data for validation, such models remain largely qualitative. By utilizing real-world data, we can
develop quantitative models that more accurately describe pedestrian behavior.
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The purpose of this study is to understand the factors that inform an intruder’s choice of path
while crossing, and build a stochastic model that predicts the path. We establish a cost function C
that penalizes the following along the intruder’s path: total distance walked, interaction with crowd
members IC(l) (= KC r−2

crowd(l)), and interaction with boundary/obstacles IB(l) (= KB r−3
obs(l)). We add

a noise ξ(l) = KnN l(0, 1), to account for the stochasticity in choice. θ ≡ {KC ,KB ,Kn} are the model
parameters. The intruder chooses a path Υ that minimizes the cost C(Υ) over it:

C(Υ) =

∫
Υ

(1 + IC(l) + IB(l) + ξ(l))dl (1)

One of our research questions is the choice of model for IC (and IB), with candidates such as linear
superposition (similar to the ‘social force’ model), nearest-neighbor interaction, and K nearest-neighbor
interaction. We start with a crowd interaction term that goes as 1/r2 to mimic a repulsion force.

We use pedestrian trajectory data over a region (20m×8m) of the platform of the Eindhoven Central
train station, The Netherlands (tracking accuracy about 1cm at 10Hz, ∼ 3 years of data). From this
data we extract instances of N-to-1 interaction at varying densities (Fig.1 A): we build a dataset of 1864
distinct instances. To numerically approximate the path that minimizes the cost in equation (1), we
discretize the region of consideration by overlaying a gridded spatial network on it (Fig.2(a)). The weight
at any edge is according to the interaction terms in eq. 1, and the cost of a path on the graph is the
sum of weights of all the edges it passes through. Using Dijkstra’s algorithm we can determine the path
with the least cost. Different realizations (with different random noise) generate different paths. Figure
1 shows some instances from the dataset in column A, and the corresponding discrete cost landscapes,
created using the nearest-neighbour interaction model with manually chosen parameters, and predicted
paths in column B. The predicted paths (in pink) typically diverge into two or more distinct groups
of paths, showcasing a meta-stable phenomena, successfully capturing the real-life stochasticity. Fig.
2(b) shows the distribution of costs of the real life trajectories, using manually selected parameters θ,
according to different crowd interaction models. It suggests that the nearest-neighbours model (for the
chosen parameters) is closest to reality as the cost distribution is minimum. The results highlight the
strong quantitative potential of the modeling approach. To get a better fit, the model parameters can
be learned from the dataset. The weights and thus cost function can be parameterized in terms of the
parameters θ. In this contribution, we will provide a formal model estimation of a parameterized cost
function using data driven techniques like system identification and machine learning.
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Figure 2: (a) Gridded spatial network overlaid on the region of consideration. (b) Distribution of costs
for the real life trajectories from the dataset according to different crowd interaction models.
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