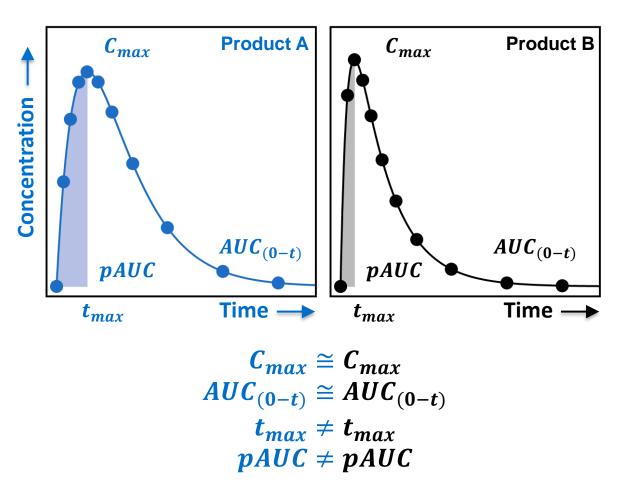
BIOEQUIVALENCE OF EARLY EXPOSURE: t_{max} & pAUC.

Jiri Hofmann BioBridges 2023 Prague, September 21-22, 2023



EARLY EXPOSURE: CLINICALLY RELEVANT

(...) drugs with rapid onset of effect or long-acting effect, or for which the shape of PK profiles affects the clinical performance because of wellcharacterized PK/PD relationships, the traditionally applied PK parameters of C_{max} and AUC may be insufficient for PK profile characterization or comparison.

Fang et al. (2021). Clin Pharmacol Ther 110(4): 880-887

EARLY EXPOSURE: TIME MACHINE

EU guideline [1991]

(...) a clinically relevant claim for rapid release or action or signs related to adverse effects. The **non-parametric 90% confidence interval** for this measure of relative bioavailability should lie within a clinically determined range. Investigation of bioavailability and bioequivalence (1991); Note for Guidance on the investigation of bioavailability and bioequivalence (CPMP/EWP/QWP/1401/98)

EMEA guideline [2010]

A statistical evaluation of t_{max} is not required. However, if rapid release is claimed to be **clinically relevant** and of importance for onset of action or is related to adverse events, there should be **no apparent difference in median** t_{max} and its variability between test and reference product.

EMA Guideline on investigation of bioequivalence (CPMP/EWP/QWP/1401/98 Rev.1/Corr)

EARLY EXPOSURE: EMA GUIDANCE

Product-specific BE guidance(s) [2018]

Requirements for bioequivalence demonstration (PKWP)

Bioequivalence	Main pharmacokinetic variables:				
assessment	AUC _{0-x} , C _{max} and T _{max}				
	90% confidence interval: 80.00-				
	125.00% for AUC _{0-x} and C _{max} .				
	Comparable median and range				
	for T _{max} .				

x - t for ibuprofen [EMA/CHMP/356876/2017] & paracetamol[EMA/CHMP/356877/2017],72hfortadalafil[EMA/CHMP/315234/2014/Rev.1]

(...) simply on the numerical comparison of medians and ranges.
Overview of comments (EMA/CHMP/644909/2017)
(...), t_{max} should occur in the same sampling time or in an adjacent one.

sampling time or in **an adjacent one**, since the median may differ simply based on a minor imbalance.

Matji et al. (2020). Chirality 32: 185–190.

Article 10(1) referral [2021]

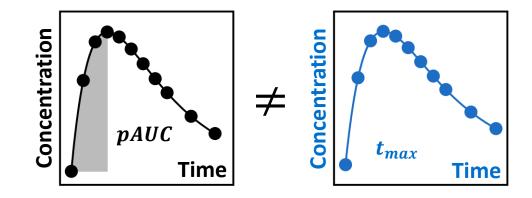
B

EARLY EXPOSURE: 2023 PSBGL REVISIONS

Requirements for bioequivalence demonstration (PKWP)

Bioequivalence	Main pharmacokinetic variables:					
assessment	AUC _{0-x} , C _{max} and T _{max}					
	90% confidence interval: 80.00-					
	125.00% for AUC_{0-x} and C_{max} .					
	Comparable median (≤20%					

x – t for ibuprofen [EMA/CHMP/356876/2017 Rev.1*] & paracetamol [EMA/CHMP/356877/2017 Rev.1*], 72h for tadalafil [EMA/CHMP/315234/2014 Rev.2*]


range for T_{max} .

difference, 80.00–125.00%) and

*This revision concerns defining what is meant by 'comparable' T_{max} as an additional main pharmacokinetic variable in the bioequivalence assessment section of the guideline. The revision of the PSBGL intends to clarify the regulatory expectations by defining an objective criterion to avoid arbitrations. (...), the continued use (...) is recommended until the BE requirements are updated with M13.

Overview of comments (EMA/CHMP/356876/2017 Rev.1)

EARLY EXPOSURE: ICH M13A VS. PSBGL

2.1.8.3 Early exposure [Lines 297-305]

(...) when the early onset of action is clinically relevant. (...), an additional PK parameter, such as area under the concentration vs. time curve between two specific time points (pAUC), may be applied.

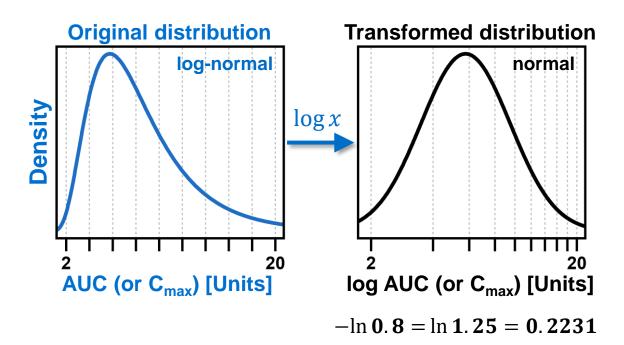
Requirements for bioequivalence
demonstration (PKWP)Bioequivalence
assessmentComparable
difference, 80.00−125.00%) and
range for T_{max}.x - t for ibuprofen[EMA/CHMP/356876/2017 Rev.1*] &

x - t for ibuproten [EMA/CHMP/356876/2017 Rev.1*] & paracetamol [EMA/CHMP/356877/2017 Rev.1*], 72h for tadalafil [EMA/CHMP/315234/2014 Rev.2*]

ACCEPTABLE RANGE: (≤20%, 80.00−125.00%)

World of t_{max}

t_{max} distribution, either on the original scale (or on the log-scale), rarely follows a normal distribution.


Chow & Liu (2009). Chapman & Hall/CRC, Boca Raton

t_{max} distribution is discrete, ordinal, skewed to the right: analysis of untranformed values

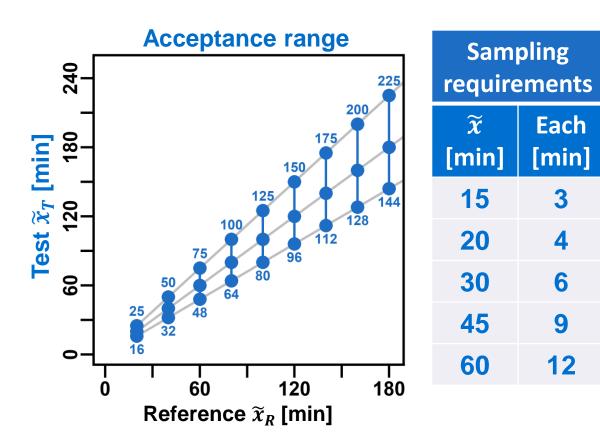
[-20%, +20%] = [80.00 - 120.00%][-20%, +25%] = [80.00 - 125.00%]

World of AUC and C_{max}

The pharmacokinetic parameters under consideration (...). (...) should be transformed prior to analysis using a logarithmic transformation.

ACCEPTABLE RANGE: 80.<u>00</u>–125.<u>00</u>%

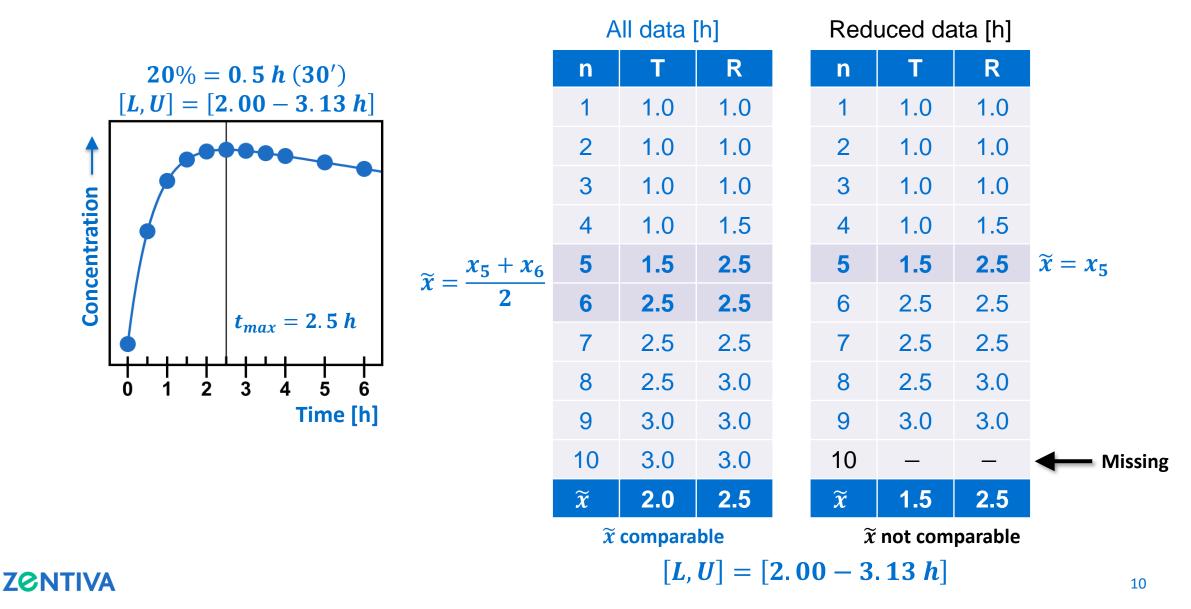
The proposed ≤20% difference should be understood as 80–125% in order to be symmetrical. (...) (i.e. the requirement that test should be equivalent to reference if and only if reference is equivalent to test)

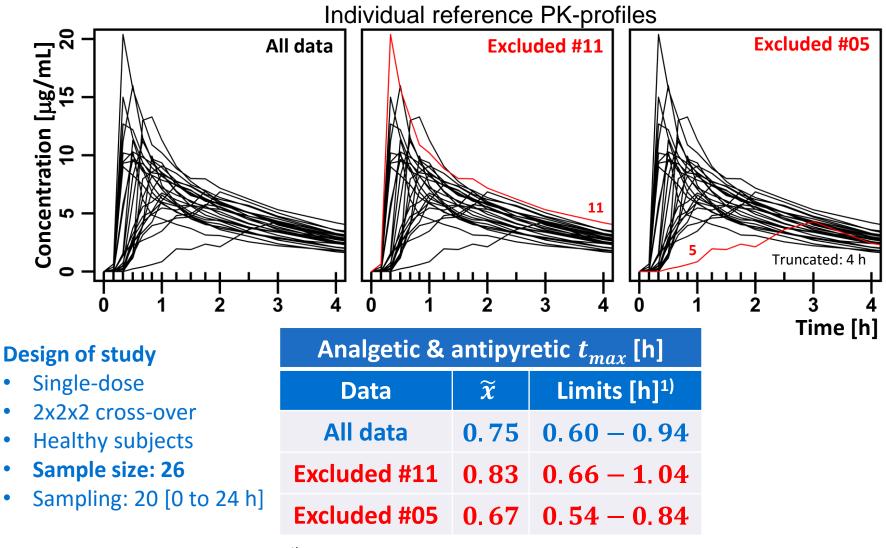

Overview of comments (EMA/CHMP/356876/2017 Rev.1)

EMA example

Reference $\widetilde{x}_R = 1.50 h$ Test $\widetilde{x}_T = 1.75 h$ 20% = 0.300 h (18')					
Difference [%] Limits [h] ¹⁾					
±20 %	1.200 - 1.800				
-20 %, + 25 %	1.200 - 1.875				

Lower: $\tilde{x}_T \ge \tilde{x}_R - 0.20\tilde{x}_R$ Upper: $\tilde{x}_T \le \tilde{x}_R + 0.25\tilde{x}_R$


ACCEPTABLE RANGE: MEDIAN \tilde{x}_R OF REFERENCE

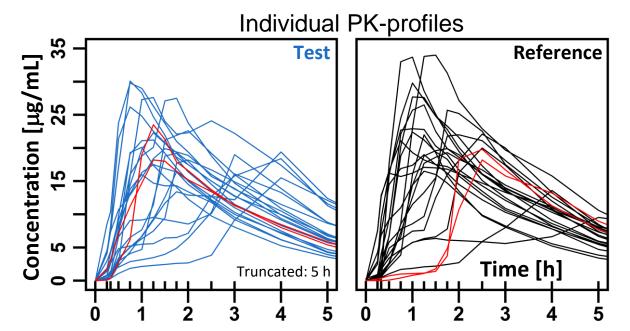

It is agreed that frequent sampling may be required (...). Samples as early as 5 or 10 minutes after dosing are not infrequent. Therefore a few more samples for a proper characterisation of T_{max} and C_{max} are not considered an ethical problem.

Overview of comments (EMA/CHMP/356876/2017 Rev.1)

MEDIAN: INFLUENCE OF A SINGLE VALUE?

MEDIAN: INFLUENCE IN REAL DATA

¹⁾Lower: $\tilde{x} - 20\%$; Upper: $\tilde{x} + 25\%$


ZENTIVA

۲

•

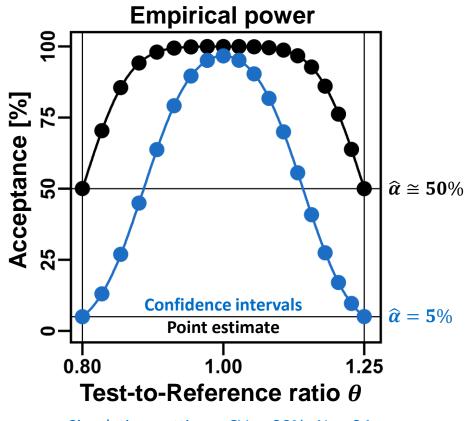
•

MEDIAN: INFLUENCE IN REAL DATA

NSAID I <i>t_{max}</i> [h]							
Data \widetilde{x}_T \widetilde{x}_R Limits [h] ¹⁾							
All ²⁾	1.375	1.375	1.10-1.72				
Reduced ³⁾	1.625	1.250	1.00-1.56				

¹⁾Lower: $\tilde{x} - 20\%$; Upper: $\tilde{x} + 25\%$; ²⁾N=22; ³⁾N=20

ZENTIVA


Design of study

- Single-dose
- 2x2x2 cross-over
- Healthy subjects
- Sample size: 22
- Sampling: 18 [0 to 12 h]

POINT ESTIMATE: TYPE I ERROR CONTROL?

Nitpicker's corner: Well, a strict α -control in 2-stage designs required, or recent discussions to f_2 estimate?

World of AUC and C_{max}

Simulation settings: CV = 20%, N = 24, design: 2x2x2 cross-over, Simulations: n = 1'000'000 per scenario

World of t_{max} in PSBGL

It is agreed that the proposed approach is not able to preserve the type 1 error.

The comparison of the medians does not intend to preserve the type 1 error but to exclude formulations with different onset of action.

Overview of comments (EMA/CHMP/356876/2017 Rev.1)

EMA: OTHER FEEDBACK TO COMMENTS

Overview of comments (EMA/CHMP/356876/2017 Rev.1)

The assessment of the range is more subjective. If all the values except one are the same, the ranges would be considered acceptable. Therefore, only if differences are evident and worse for the test product, the range could be used for a regulatory decision.

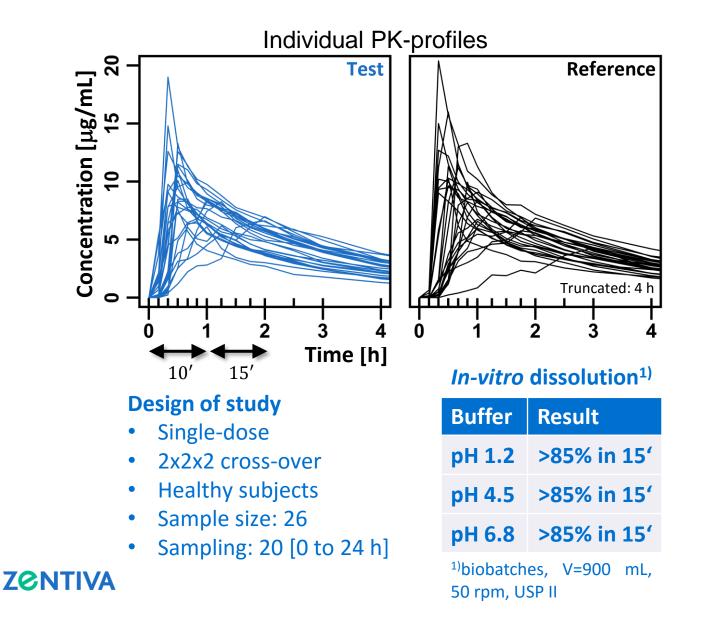
Although it is agreed that the **non-parametric 90% CI** for the T_{max} difference is **more correct** methodologically, its use was discarded (...). The definition of a clinically relevant acceptance range for each specific drug is not feasible (...). Even for those NSAIDs for which a PSBGL has not been issued, it can therefore be implied that the **same requirements** are applied in the assessment of **applications** if they are used **for acute pain relief.**

The present approach is not based on ratios. (...) a straightforward numerical subtraction.

$$\begin{split} \tilde{x}_T &\geq \tilde{x}_R - 0.20 \tilde{x}_R & \tilde{x}_T \leq \tilde{x}_R + 0.25 \tilde{x}_R \\ \tilde{x}_T &\geq \tilde{x}_R (1 - 0.20) & \tilde{x}_T \leq \tilde{x}_R (1 + 0.25) \\ \frac{\tilde{x}_T}{\tilde{x}_R} &\geq 0.8 & \frac{\tilde{x}_T}{\tilde{x}_R} \leq 1.25 \end{split}$$

COMPARABLE MEDIAN: DRAFT TO FINAL

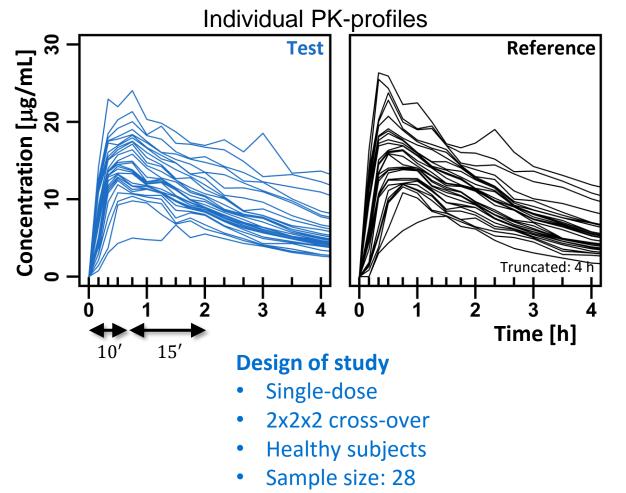
10 stakeholders: companies & associations


General and specific comments

Number [%] of comments ¹⁾					
Outcome	General	Specific			
Not accepted	6 [38%]	29 [83%]			
Partially accepted	4 [25%]	3 [9%]			
Accepted	3 [19%]	3 [9%]			
None (Noted)	3 [19%]	0 [0%]			
Total	16 [100%]	35 [100%]			

¹⁾Incomplete comments published for paracetamol (only 6 pages out of 32 pages released)

CASE STUDIES: ANALGETIC & ANTIPYRETIC TABLET

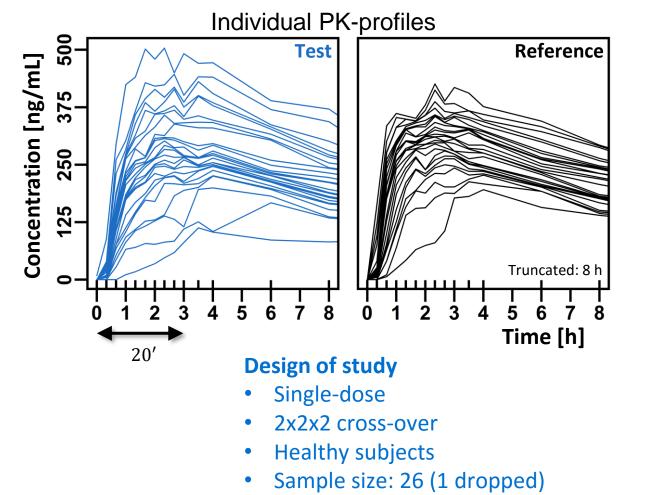


Analysis of t_{max} [h] (N=26)					
IMP	\widetilde{x}	min – max			
Test	0.50	0.33 - 2.00			
Reference	0.75 0.33 - 3.00				
[L, U] = [0.60 - 0.94 h]					
T - R ¹⁾	-0.125	-0.245 - 0.000			

¹⁾ Hodges-Lehmann with 90% non-parametric confidence interval (WMW-test p=0.2234)

Comparable median not shown.
Bioequivalence of t_{max} failed.
Sampling 20% rule: 9 minutes.

CASE STUDIES: NSAID I SUSPENSION


• Sampling: 19 [0 to 12 h]

Analysis of t_{max} [h] (N=28)					
IMP	\widetilde{x}	min – max			
Test 0.75 0.33 - 3.00					
Reference	0.50	0.33 – 2.33			
[L, U] = [0.40 - 0.63 h]					
T - R ¹⁾	0.042	-0.125 - 0.125			

¹⁾ Hodges-Lehmann with 90% non-parametric confidence interval (WMW-test p=0.6562)

Comparable median not shown. Bioequivalence of t_{max} failed. Sampling 20% rule: 6 minutes.

CASE STUDIES: PDE5 INHIBITOR TABLET

• Sampling: 21 [0 to 72 h]

Analysis of t_{max} [h] (N=25)						
IMP	\widetilde{x}	min – max				
Test	Test 2.67 1.67 - 6.00					
Reference	2.33	0.67 - 4.00				
[L, U] = [1.87 - 2.92 h]						
T - R ¹⁾	0.415	-0.080 - 0.915				

¹⁾ Hodges-Lehmann with 90% non-parametric confidence interval (WMW-test p=0.2295)

Comparablemedianshown.Bioequivalenceof t_{max} proven.Sampling 20% rule:28 minutes.

Comparable range?

PARTIAL AREAS: I'LL BE BACK...

Draft EMA guideline [2008]

4.1.8 Evaluation [Lines 555-557]

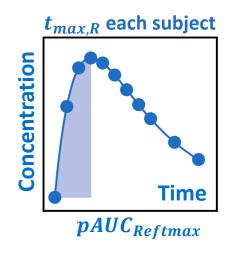
For products where rapid absorption is of importance, equivalence (...) by demonstration of bioequivalence for partial AUC as a measure of early exposure.

Keywords from comments: high variability & large sample sizes due to 80-125%, justifying a truncation time point, no retrospective application.

Draft M13A guideline [2023]

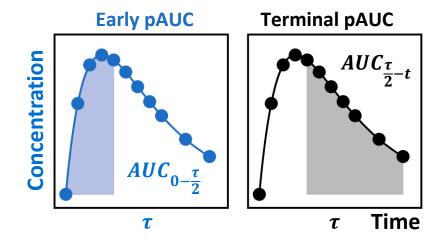
2.1.8.3 Early exposure [Lines 297-305]

(...) when the early onset of action is clinically relevant. (...), an additional PK parameter, such as area (...) between two specific time points (pAUC), may be applied.

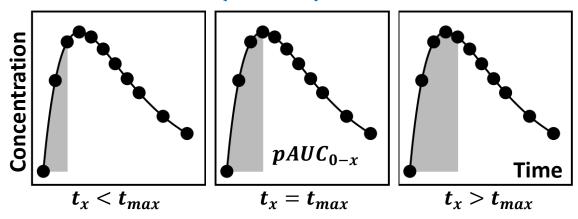

Keywords from comments: high variability & scaling not permitted, unclear cutoff values, no retrospective application.

PARTIAL AREAS: VARIABILITY

Immediate release


Intra-CV [%] of PK-metrics ¹⁾							
IMP C_{max} AUC_t $pAUC$							
NSAID I	11	6	30				
NSAID II	10	9	44				
NSAID III	11	4	67				

¹⁾ pAUC for t_{max} in each subject (pAUC_{Reftmax}); **Chen et al. (2011) Pharm Res 28: 1939-1947**



Modified-release

..., the early pAUC (...) appeared to be slightly more variable, (...) the terminal pAUCs presented a significantly larger difference in ISCV (...). (...) all the pAUC parameters were more variable than the conventional AUC parameters. Boily et al. (2015). Eur J Pharm Sci. 66: 70-7

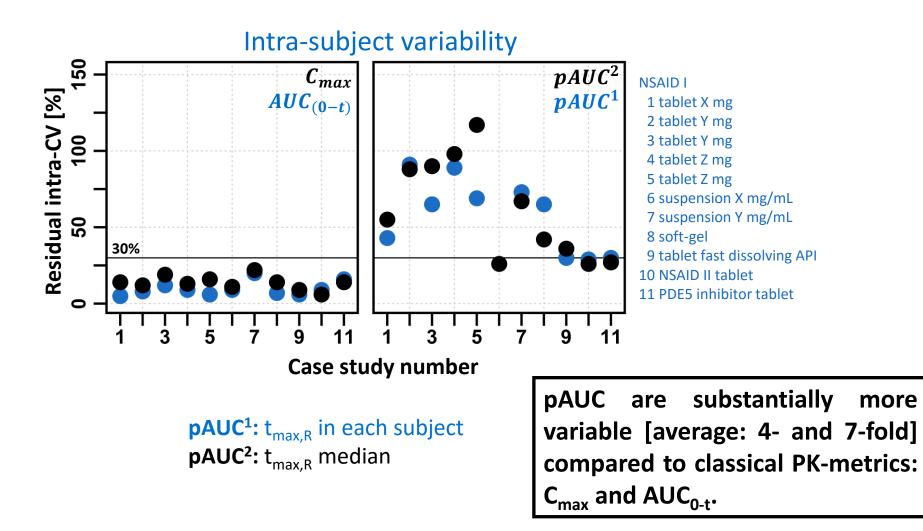
PARTIAL AREAS: CUTOFF (0 - x)?

Draft EMA guideline 2008 [Line 313-317]

The partial area can in most cases be truncated at the **population median of** t_{max} values for the reference formulation. However, an alternative time point for truncating the partial AUC can be used when clinically relevant.

Health Canada BA guideline 2023

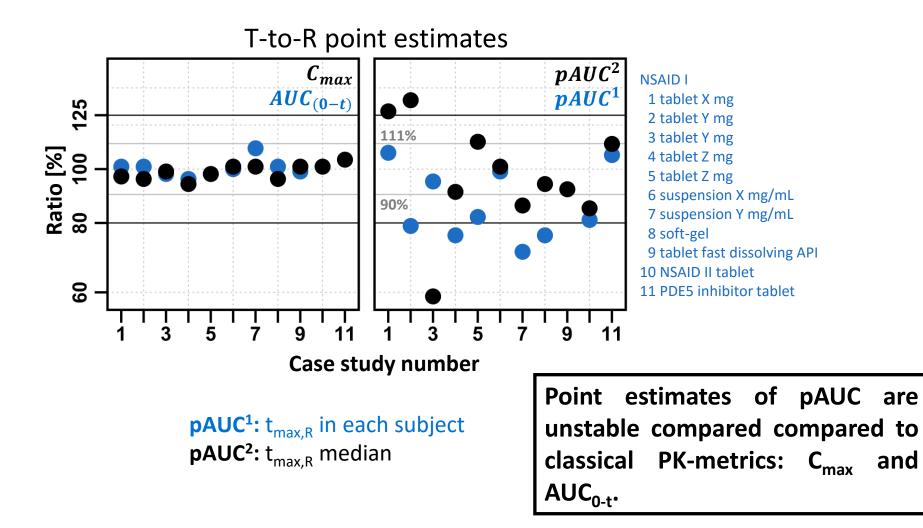
Where the time to onset of action is important, the following parameter should also be reported: h) The area under the curve to t_{max} of the reference product, calculated **for each study subject** (AUC_{Reftmax}).


CASE STUDIES: PARTIAL AREAS

Analgeti	c <mark>& Anti</mark> p	oyretic	NSAID I		PDE5 inhibitor			
Ratio &	Ratio & intra-CV [%] ¹⁾		Ratio &	Ratio & intra-CV [%] ¹⁾		Ratio &	intra-CV	[%]1)
pAUC	Ratio	CV	pAUC	Ratio	CV	pAUC	Ratio	CV
pAUC ¹	102	74	pAUC ¹	95	24	pAUC ¹	72	56
pAUC ²	147	72	pAUC ²	106	30	pAUC ²	81	57
AUC _(0-t)	101	7	AUC _(0-t)	99	8	AUC _(0-t)	99	10
C _{max}	101	21	C _{max}	92	13	C _{max}	96	15
¹⁾ N=26			¹⁾ N=28			¹⁾ N=25		

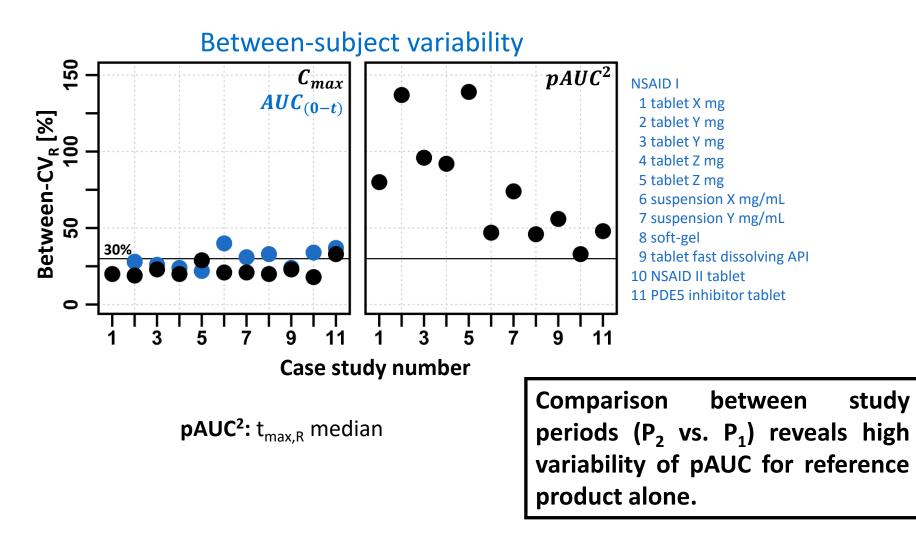
pAUC¹: t_{max,R} in each subject **pAUC²:** t_{max,R} median

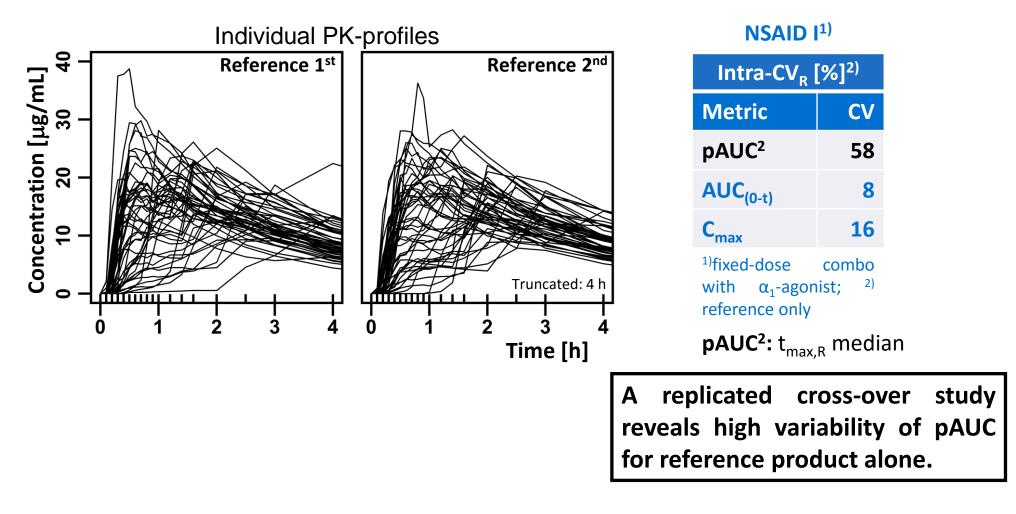
Designs: 2x2x2 cross-over, single-dose, in healthy volunteers


CASE STUDIES: VARIABILITY

ZENTIVA

Designs: 2x2x2 cross-over, single-dose, in healthy volunteers


CASE STUDIES: RATIOS


ZENTIVA

Designs: 2x2x2 cross-over, single-dose, in healthy volunteers

CASE STUDIES: REFERENCE VS. REFERENCE

CASE STUDIES: REFERENCE VS. REFERENCE

SUMMARY & QUESTIONS

- 80-125% of $\tilde{x}_R t_{max}$: statistically flawed & not appropriate
- Stakeholder comments to PSBGL were essentially dismissed
- Studies before 2023: not compliant with PSBGL & ICH M13?
- ICH M13 & pAUC: extreme variability & unstable point estimate

Clinical relevance of onset of action

Non-parametric CI with clinical range as alternative?

Scientific arguments not sufficient? Do we understand each other?

Expiry date on studies done before 2023?

What changed from 2008–2023? Do we understand variability of pAUC? Scaling not permitted? Cut-off to be used?

Do we understand the PK/PD?

- > library(fortunes)
- > fortunes::fortune(360)

Either I am misunderstanding your intent or you need another cup of coffee.

-- A Rolf Turner (in response to a user who did not understand his advice) R-help (November 2013)

- > library(fortunes)
- > fortunes::fortune(354)

Well, the biggest room in the world is the room for improvement :)

-- Soren Hojsgaard (in reply to a suggestion to make pbkrtest and Ime4 more robust) R-SIG-Mixed-Models (August 2013)