

Untangling absorption mechanisms and variability in bioequivalence studies using population analysis

BioBridges 2022

22-23 September 2022

Nuno Silva

Inter-Individual Variability (IIV)

Between Subject Variability / Inter Subject Variability

- **Demographics** (age, gender, race, BMI, weight)
- Environmental factors

 (diet, smoking, exposure to pollutants)
- Genetic phenotype (polymorphic enzymes, transporters)
- Physiological and pathological (pregnancy, hepatic and renal impairment)
- Other factors (food effect, posture, other drugs)

Inter-Occasion Variability (IOV)

Use of Population Pharmacokinetics Modelling

Population Pharmacokinetics Modelling

Biopharmaceutical Drug Disposition Classification System (BDDCS)

States R

Objectives

To identify subject-related factors affecting Inter Occasion Variability of pharmacokinetic parameters using data from bioequivalence trials

 To develop population pharmacokinetics models for each drug from bioequivalence trials

 To identify the most relevant factors (covariates) related to subjects that can affect PK parameters

✓ To relate BDDCS class and drug absorption and disposition PK parameters

 To investigate other means of controlling intra-subject variability by refining the inclusion/exclusion criteria for study participation and optimize study design of crossover studies

Data Sources

- Clinical Trial Data
 - <u>Regulatory and Ethical Aspects</u>

Secondary use of data from 31 crossover studies that demonstrated bioequivalence

Studies performed in BlueClinical Phase I Unit

CEIC

INFARMED

Observational study 2018_EO_05

Data Sources

Clinical Trial Data

Population Subject Characteristics

- Hypersensitivity/allergy reaction to the study drug, excipients or other drug
- Medical or surgical condition that could affect drug PK or subject safety
- History of regular consumption alcohol, drugs of abuse and methylxanthines
- Use of drugs (except hormonal contraceptive)

- Etoricoxib (M01AH05)
- Febuxostat (M04AA03)

- Abiraterone (L02BX03)
- Ibrutinib (L01EL01)
- Sunitinib (LO1EX01)
- Tofacitinib (L04AA29)

- Azithromycin (J01FA10)
- Moxifloxacin (J01MA14)

Data Sources

Drug Substances Clustered by BDDCS Class

Population Analysis

<u>Structural and Statistical Model</u>

- Population Analysis
- <u>Model Evaluation / Validation</u>
 Visual Predictive Check (VPC)
 Comparison between parameters predicted by population model with those published in literature

- Noncompartmental Analysis
 - <u>Covariate Analysis</u>

BDDCS

DRUG

Alprazolam

Population Pharmacokinetic Analysis

Model Evaluation: Visual Predictive Check (VPC)

Model Evaluation: Visual Predictive Check (VPC)

Fixed Effects

BDDCS	DRUG	T _{lag} (h)	k _a (h ⁻¹) / Tk ₀ (h) ^(a)	Cl/F (L/h)	Cl _D /F (L/h)	V ₁ /F (L)	V ₂ /F (L)
I	Alprazolam	0.225	3.24	4.55	9.08	63.9	16.8
	Amlodipine ^(b)	0.207	4.01 ^(a)	30.6	58.8	1120	446
	Fluoxetine Fasting ^(b)	0.702	2.62 ^(a)	26.2	13.5	1250	452
	Fluoxetine Fed ^(b)	1.150	3.46 ^(a)	29.6	0.48 ^(*)	1310	0.008(*)
	Paroxetine Fed ^(b)	0.616	3.13 ^(a)	161	NA	2650	NA
	Sertraline ^(b)	0.875	2.97 ^(a)	157	NA	4810	NA
	Sunitinib ^(b)	0.619	5.20 ^(a)	32.5	NA	1380	NA
	Tofacitinib Fasting	0.225	4.03	34.2	27.1	67	31.9
	Tofacitinib Fed	0.232	1.01	11.8	24.8	102	6710
	Abiraterone	0.526	1.77 ^(a)	1780	1060	10000	18100
	Etoricoxib	0.306	0.75 ^(a)	4.35	13.4	62.5	68.2
	Febuxostat	0.316	1.34 ^(a)	9.97	1.81	26.1	14.9
••	Ibrutinib Fasting	0.320	1.00 ^(a)	4070	5570	27300	44500
	Ibrutinib Fed	0.473	3.95 ^(a)	3690	435	13400	7040
	Zofenopril	0.100	1.04	346	NA	264.42	NA
	Azithromycin Fed ^(b)	0.861	2.54 ^(a)	102	175	1080	2680
	Clonidine Fasting	0.270	0.30	15.5	NA	251	NA
	Clonidine Fed	0.845	0.25	15.9	NA	246	NA
	нстz	0.436	0.79	24.8	13.4	96.4	121
	Moxifloxacin	0.225	2.16	8.64	1.12	116	24.8
IV/	Chlorthalidone Fasting ^(b)	0.431	1.88 ^(a)	8.07	39.7	371	179
	Chlorthalidone Fed ^(b)	0.705	3.11 ^(a)	6.5	4.73	344	159

(a) Parameter corresponding to the duration of the absorption process (Tk₀)

^(b) P-Glycoprotein

Results

 No patterns observed by BDDCS class Within physiological range of gastric 	s	BDDCS	Zero order absorption Tk0 (h)	First order absorption k _a (h ⁻¹)	Time for complete absorption in first order kinetics (h)		
emptying		I	2.62 - 5.20	3.24 - 4.03 (1.01*)	2.14 - 1.72 (6.86*)		
 Fed > Fasting 		Ш	0.75 - 1.77 (<mark>3.95*)</mark>	1.04	6.66		
• Fasting: 0.10 to 0.87 h			2.54	0.30 –2.16 <mark>(0.25*)</mark>	23.10- 3.21 (27.72*)		
• Fed: 0.23 to 1.15 h	T _{lag}	$\frac{k_a}{V}$	1.88 (3.11*)	NA	NA (*) Fed		
 CI/F: 1.12 - 161 L/h except ABI, IBR, ZOF Typical parameter estimates in accordance with literature 	CI/F	 V_d/F V_d > V_{physiologic} mainly SER, TOF Fed, ABI, IBR, AZT Fed V_d higher in Class I and II (high perm.) Typical parameter estimates in accordance with literature 					

Results – literature comparison

Drug	F (%)	t ½ (h)	
IBRUTINIB	2.9	4-6	-
FLUOXETINE	< 90	24-72	
SUNITINIB	High	40-60	

Very low Bioavailability

Sampling collection until 72h. Expanding sampling periods could hamper proper characterization of terminal disposition phase

Random Effects

	IIV (η)	IOV (k)	RUV (ε)		
Correlation with BDDCS	Not	found	Class 1 / 3 < Class 2		
PK parameters that most often show variability	$F > k_a/Tk_0 > T_{lag}$	$T_{lag} \sim k_a / T k_0 > F$			
Magnitude of PK parameters IIV vs IOV	 Tlag and k_a/Tk₀: IIV < IOV F: IIV > IOV 		RUV Fasting < RUV Fed (+2x)		

ISCV (ANOVA) vs IOV (PopPK modelling)

Correlation between ISCV (%) derived for C_{max} and IOV for Bioavailability (F)

ISCV (ANOVA) vs IOV (PopPK modelling)

Correlation between ISCV (%) derived for AUC and IOV for Bioavailability (F)

ISCV (ANOVA) vs IOV (PopPK modelling)

Very slight correlation between ISCV (%) derived for C_{max} and IOV for TK_0/K_a

ISCV (ANOVA) vs IOV (PopPK modelling)

No correlation between ISCV (%) derived for AUC and IOV for TK_0/K_a

Non-Compartmental Analysis

Impact of BDDCS class and demographics on PK parameters

BDDCS	C _{max}		AUC		V/F		CI/F	
	Sex	НС	Sex	НС	Sex	НС	Sex	HC
I	Male < Female		Male < Female (Except ALP, PAR)		Male > Female (Except PAR)		Male > Female (Except ALP, PAR)	
II	No Diff		No Diff		No Diff		No Diff	
III	Male < Female	No Diff	Male < Female		Male > Female		Male > Female	
IV	Male < Female		No Diff		Male > Female	No Diff	No Diff	

HC Hormonal Contraceptive

Impact of demographics on Bioavailability (F) Parameter

Correlation analysis between ISCV and Dose Number by BDDCS class

Correlation analysis between ISCV and Dose Number by BDDCS class

Correlation analysis between ISCV and Dose Number complemented with literature data

Literature data included from Mol Pharm. 2009 Jan-Feb;6(1):48-59. doi: 10.1021/mp800140m

Conclusions

- The <u>PopPK models</u> successfully described the <u>PK profiles</u> for all the drugs explored in this work, providing <u>meaningful</u> and <u>precise</u> pharmacokinetic parameters estimates
- The majority of BDDCS class 1 and 2 drugs followed a zero order absorption kinetics. In class 1, this tendency is observed for drugs characterized to be P-gp substrates
- The majority of BDDCS class 3 drugs followed a first order absorption kinetics. The exception is azithromycin, the only drug in this class that is a P-gp substrate
- The parameters that showed the most variability were those related to the absorption process
 - \succ For IIV, the parameters that most showed variability were $F_{relative}$ and k_a/Tk_0
 - \succ For IOV, the parameters that most showed variability were relative T_{lag} and k_a/Tk₀
 - No pattern was found between BDDCS class and IOV
 - A correlation was found between ISCV derived from ANOVA for C_{max} / AUC and IOV derived for F_{relative}

Conclusions

- RUV estimates was found to be higher for BDDCS class 2 and more than double in fed studies compared to fasting
- T_{lag} was within the physiological range of gastric emptying and no pattern was found related to BDDCS class. Variability in IIV lower than in IOV
- Gender seems to have an influence on the F_{relative} for class 1 and 3 drugs, with higher estimates for women in comparison to men
- ISCV for C_{max} seems to be correlated with the Dose Number for Low Soluble Drugs
 - Is Ad Libitum water after 1 hour a source of inter and intra-subject variability for low soluble drugs?
 - Should all subjects be administered with same water volumes in the morning, after product administration?

Publication

Pharm Res (2021) 38:2047-2063 https://doi.org/10.1007/s11095-021-03136-3

RESEARCH PAPER

Untangling Absorption Mechanisms and Variability in Bioequivalence Studies Using Population Analysis

Carolina Ameijeiras Rodríguez¹ () • Sara Carolina Henriques^{2,3} • Aymara Sancho-Araiz^{4,5} • Iñaki F. Trocóniz^{4,5} • Luis Almeida^{1,2} • Nuno Elvas Silva^{2,3}

Acknowledgmens

Patrício Soares da Silva, MD, PhD Carolina Ameijeiras, PhD student

Nuno Silva, PharmD, PhD Paulo Paixão, PhD

Iñaki F. Trocóniz, PharmD, PhD

Luis Almeida, MD, PhD Sara Henriques, PhD student

Sérgio Simões, PharmD, PhD

Questions?