

DYNAKIN REENGINEERING THE DRUG DEVELOPMENT PROCESS

dk DynaKin

your drug development solution provider

Bioanalytical services

PK modelling in pharmaceutical development

Prague 22-23 September, 2016

© Dynakin SL. All rights reserved

Outline of the presentation

- Challenges PK analysis to support pharmaceutical development
- Summary of Population PK concepts and applications
- Examples
 - Dealing with data limitations
 - Understanding mechanisms underlying PK profile
 - Use of simulations in pharmaceutical development context

PK analysis to support pharmaceutical development

- Relative bioavailability
 - Same analysis as bioequivalence study: Cmax, AUC
 - Link observations to in vitro
- Challenges
 - Limited data and variability of results
 - Cmax and AUC
 - rough estimates, provide little information
 - Variables impacted by many underlying factors
 - Are not independent PK parameters
 - Importance of other criteria can be subjective
 - Analysis not standardized

PK analysis

- Individual approach
 - Non-compartmental (usual) or compartmental
 - individual and average data
 - Standard exponential equations can describe the curves (e.g. $C = Cie^{-kt}$)
- Population modelling approach
 - Studies sources of variability between individuals of a population
 - Population, not limited to sample variability
 - Define mathematical model that describes the data
 - Estimate parameters and variability
 - Assess model fit
 - Explore what explains variability
 - Assess if model fit improved based on statistical criteria
 - Can be predictive under certain conditions(if variability is characterized)

- Two modeling levels
 - Level I: $\mathbf{C} \mathbf{p}_{ij} = \mathbf{f}(\mathbf{p}_i, \mathbf{t}_{ij}) + \boldsymbol{\varepsilon}_{ij}$ $\boldsymbol{\varepsilon} = \mathbf{N}(0, \sigma)$ • Level II: $\mathbf{p}_i = \overline{\mathbf{p}} + \mathbf{\eta}_i$ $\boldsymbol{\eta} = \mathbf{N}(0, \omega)$

f(p,t) is the structural model.

Statistical model for intraindividual variability: ϵ Statistical model for interindividual variability: η σ , ω are standard deviations

RESIDUAL ERROR:

-measurement errors -model misspecification

INTERINDIVIDUAL ERROR:

-natural variability between individuals (physiology, pathology, etc.)

- Requires less experimental data to be conclusive
- Can integrate data from different sources
 - Doses, study designs, populations, formulations
 - knowledge integration and knowledge gain
 - With specific considerations and within certain constraints
- Can distinguish what explains the data from random effects
 - Cl, Vd, ka, F...
 - Weight, age, co-medication, disease state...
 - Formulation effects (dissolution, PSD, others...)

- Potential applications
 - Compare doses/products with limited data
 - Population bridging
 - Determine underlying mechanisms behind profile
 - PK/PD models for formulation design for hybrids or lifecycle management
 - Simulate to steady state
 - Simulate different scenarios
 - Impact of change in ka on PK profile and average data
 - Impact of change in covariate
 - Fasting to fed conditions (if mechanism is known)
 - Model based evaluation of interactions and application to FDC

dk DynaKin

- Models are built for purpose
 - What do we want to know?
 - How certain do we need to be?
 - What are we willing to assume?
- Possibilities are a function of the quantity, quality and mechanistic understanding of data available

dk DynaKin

Strategic consulting in drug development

solution provider

your drug development

Clinical trial & medical writing

Bioanalytical services

Example 1 dealing with data limitations

What is the relative AUC_{0-t} between products?

- Develop and apply popPK models
 - Confirm appropriate (observations vs predictions)
 - Apply to
 - Overlay 95% CI profiles
 - Calculate AUC_{0-t} (pop and ind)
 - Additionally, determine if data fits
 - Green vs orange
 - Other studies, literature
 - Explore impact on profile
 - Sensitivity analysis
 - (F, ka, other)

dk DynaKin

your drug development solution provider

Bioanalytical services

Example 2 understanding underlying mechanisms

Background

- Hybrid application, claim faster onset
- Development of 2 test products
- Comparison with different brands of reference
- Two comparative BA studies (BE-250 and BQE)
 - reference data comparable,
 - Test product difference in Cmax between studies
- Authorities concern: BE study reliable? Safety test product risks of higher Cmax?
- Approach
 - Estimate PK parameters of both studies
 - Model PK and influence of covariates
 - Use model to simulate impact of differences in key covariate and ka
 - Justify concentrations observed or extreme simulations always below safety threshold

dk DynaKin

- Boxplots (red is the interquartile range and whiskers the 95% confidence)
 - p values from separate evaluation presented for informative purposes
- Weights differ between BE-250 and BQE, but AUC does not
- Weight corrected Cmax is barely significant Weight alone explains almost all of the difference!

- Merged BE-250 + BQE fast coated tablet bi-compartmental model developed
 - Variability in modeled V2 explained completely by WT
 - No relationship with other PK parameters
 - Only difference between studies was WT~V2

• Modeled V2 explains Cmax ~ WT relation

dk DynaKin

• Why not the same for all formulations?

• Why not the same for all formulations?

dk DynaKin

- Tub is filled rapidly then at same amount (dose), the starting concentration depends on the size of the tub
- i.v ~ p.o. when ka is greater than 2 h⁻¹

• Tub is filled slowly then at same amount (dose), the concentration does not depend on the size of the tub to the same extent (larger influence of ka and ke)

dk DynaKin

your drug development solution provider

Bioanalytical services

Example 3 understanding underlying mechanisms

All results shown are true in form but all values are code-scaled

- Target: develop improved formulation of Drug Z
 - Absorption dependent on pH and solubility
 - Transporter rate limited absorption
 - BCS class III/IV
- In-Vivo and in-vitro data available for 2 tests and one reference product
- In-Vivo convolution method applied ("IVc-PK" model)
 - Modeled from the PK in simultaneous fitting of both dissolution and ADME
 - In vivo absorption PK appears highly complex with multiple peaks
 - Physiological rates of absorption that are both 1st and 0th order combined
 - Concentration dependent transporter saturation

- Fraction of dose F1 for the 1st order process (ka)
- Remaining dose (Dose-F1) absorbed after a tlag by 0 order (saturated transport)

- Sequential absorption for mono compartmental structure; specific sites of absorption
- Both 0th order processes proceed in parallel (both initiate at 1.3 hours after dose intake)
- Majority of the dose is absorbed prior to saturation (1st order) across the GIT
 - Includes convolution for two in-vivo Weibull dissolution rates (at the transport sites)
 - F1, fraction of dose going to 1st order process (1-F1 goes to the two 0th orders)
 - FF2 proportion reduction in the dose going to the 1st 0th order process

- The model adjusts the position of the arrows and the rates simultaneously
- pH corresponds with time

• Model IVc-PK estimated Weibull absorption profiles and rates at two pH

\$SUBROUTINES ADVAN6 TRANS1 TOL=5			
\$MODEL	 Custom NONMEM c 	ode used fo	
NCOMPARTMENTS=2 NPARAMETERS=11			
COMP=(DEPOT DEFDOSE)			
COMP=(CENTRAL DEFOBS)		Daramoto	
		Farameter	
\$РК	K = CL/V2	absorptio	
TVKA = THETA(1)		Maxim	
KA = TVKA*EXP(ETA(1))	S2 = V2/1000	and F1	
TVCL = THETA(2)		"Alpha	
CL = TVCL	IF(TIME.EQ.0.AND.CMT.EQ.1)DOSE=AMT	"Beta"	
TVV2 = THETA(3)		nH>6 S	
V2 = TVV2	\$DES	"ті"–т	
	WR1=0	11 -1	
FF = THETA(4)*EXP(ETA(2))			
FRAC = THETA(5)*EXP(ETA(3))			
F1 = FF*(1-1/(1+FRAC))	= V E- V L \\/D1 = E\\/1*DOSE*/DET1/A D1*//TT/A D1**/DET	- V C- V L A/D1 - C A/1*DOCC*/DCT1/A D1*//TT/A D1**/DCT1 1*CVD/ /TT/A D1**DCT1\	
F2 = FF*(1-F1)	WNI - FWI DOSE (BEII/ALFI) ((II/ALFI) (BEII-I)) EAF(-(II/ALFI) BEII)		
FRA2 = THETA(6)*EXP(ETA(4))	TT=TIMF-TIM2		
FW1 = F2*(1-1/(1+FRA2))	WR2 = FW2*DOSE*(BET2/ALP2)*((TT/ALP2)**(BET	WR2 = FW2*DOSE*(BET2/ALP2)*((TT/ALP2)**(BET2-1))*EXP(-(TT/ALP2)**BET2)	
FW2 = F2*(1-FW1)	ENDIF		
BET1 = THETA(7)	GUT = A(1)		
ALP1 = THETA(8)	DADT(1) =-KA*GUT-WR1-WR2		
BET2 = THETA(9)	DADT(2) = KA*GUT+WR1+WR2-K*A(2)		
ALP2 = THETA(10)			
TIM1 = THETA(11) * EXP(ETA(5))	▲ \$ ERROR		

TIM2 = THETA(11)+THETA(12)

slide 27

ONMEM code used for IVc-PK model

Parameters characterizing the profile of Weibull absorption Maximum amount dissolved a (complex) function of bioavailabilities and F1 fraction "Alpha" = time scale (Alpha = 0.1 for pH>5; Alpha = 0.43 for pH>6.8) "Beta" = shape parameter (Beta = 2.96 for pH>5; Beta = 1.1 for pH>6.8) "TI"=Time of initiation of absorption at each pH TI = 1.6 hr for pH > 5TI = 1.8 hr for pH>6.8

\$ ERROR

• Model predictions vs. observed

DRUG Z Observed & Predicted (ng/mL)

- In-vivo expected dissolution is estimated using different pH and times
- Direct correlation with the *in-vitro* profiles
- % of dose absorbed by 0 order different for initial tests and reference
- Formulation can be designed to meet specifications for the desired in-vivo PK
- Results of subsequent pilot study fit with modelled expectations

dk DynaKin

your drug development solution provider

Bioanalytical services

Example 4 understanding underlying mechanisms

IVIVc two-dissolution-site model-structural model adapted ulletfrom Otsuka et al. (2015)

** F (systemic bioavailability after oral administration) is estimated as an additional model parameter

slide 31

I.V. from literature

dk DynaKin

Bioanalytical services

Simulations

Simulations

- Develop and validate popPK models
- Simulate effect of changes in parameters
 - How does a change in ka affect the profile
- Simulate different study possibilities
 - SS with different run-ins (e.g. patient studies)
 - Parallel designs with un-even covariates (e.g. co-medications)
- Different approach depending on use of simulation
 - Simulate single population profile
 - Simulate T and R 95 %CI overlay (e.g. n of 5000)
 - Use population samples to simulate several studies (e.g. 100, 1000, 10⁶)

• Theoretical PK of multiple dose with cross-over and different dose run-ins

-test.v3.ssc

- Steady state simulations using final complete model
 - *Running* period: 2 doses of X mg, Y mg or Z mg, REFERENCE product. (patient proportion 4:3:1)
 - Study Period: 4 doses of Y mg, REFERENCE or TEST 1

- Steady state simulations using final complete model
 - *Running* period: 2 doses of X mg, Y mg or Z mg, REFERENCE product. (patient proportion 4:3:1)

REFERENCE

• Study Period: 4 doses of Y mg, REFERENCE or TEST 2

vs TEST

- Simulation of multiple studies
 - AUCss
 - Test 1/ Reference

AUC 90% CI evolution with population sample

- Simulation of multiple studies
 - AUCss
 - Test 2/ Reference

AUC 90% CI evolution with population sample

Concluding points

- Pop PK methods are a complementary tool for pharm development
 - Can use standard experimental data (e.g. pilot, dissolution, etc.)
 - Descriptive model to understand processes behind observations
 - Distinguish what can be explained (fixed) from what cannot (random)
 - Can test if data fits with galenical hypothesis
- Pop PK simulations supplement risk assessments
 - Simulate what would happen if
 - Different study design, larger sample size,....
 - 100, 1000, 10⁶ BE studies were conducted
 - Change in formulation *within studied frame*

dk DynaKin

Strategic consulting in drug development

your drug development solution provider

Bioanalytical services

Thank you for your attention!

