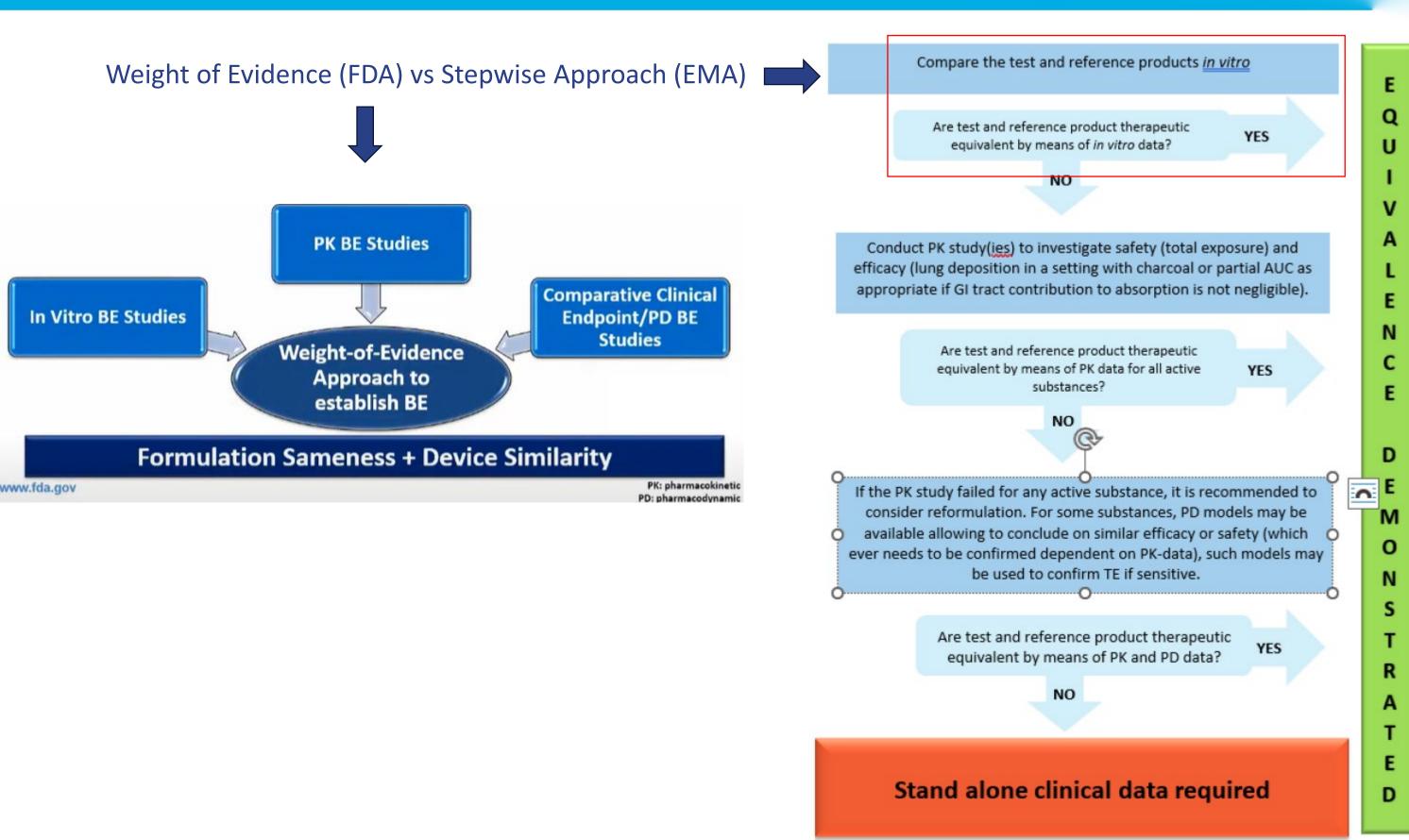


OIP development in practice: overcoming barriers to bioequivalence

Przemysław Reszka

CMC Regulatory Affairs Manager

BioBridges 2025, Prague



Agenda

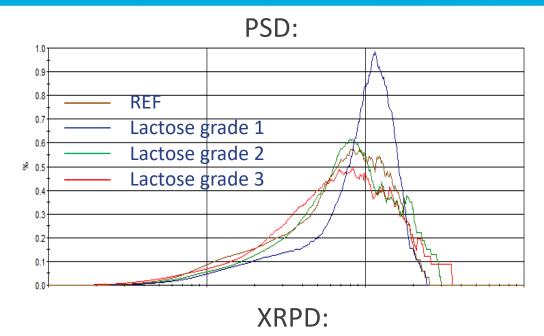
- Orally Inhaled Products (OIP) regulatory framework
- In-vitro Therapeutic Equivalence (TE) case study
- Updated guidelines impact on pharmaceutical development and in-vitro approach
- Conclusions

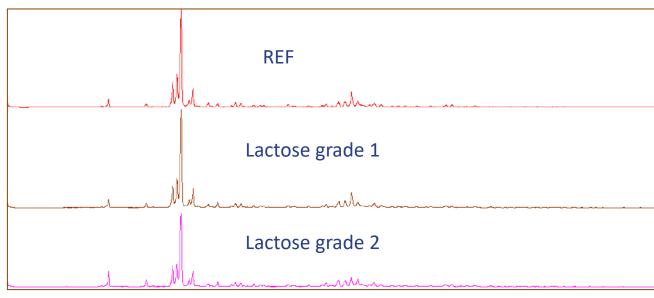
Orally Inhaled Products (OIP) – Regulatory Approach

Case study - in-vitro comparison

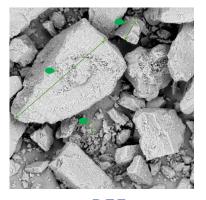
Generic DPI (1 strength) compared to REF acc. OIP guideline CPMP/EWP/4151/00 Rev. 1 (still in force till 02.2026):

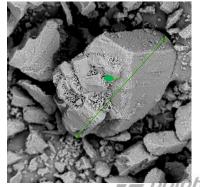
- 1. The product contains the same active substance (i.e. same salt...)
- → confirmed, the same salt as REF



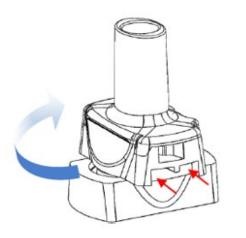

- → confirmed, inhalation powder hard capsules (DPI) with co-packaged single dose inhaler device
- 3. The active substance is in the solid state: any **differences in crystalline structure and/or polymorphic form** should not influence the dissolution characteristics, the performance of the product or the aerosol particle behaviour
- → single polymorphic form demonstrated, similar DD and APSD

Case study - in-vitro comparison (2)


4. Any qualitative and/or quantitative differences in excipients should not influence the performance of the product...


- Lactose comprises a major part of the formulation
- The same amounts of lactose as REF (lactose content declared in SmPC)
- Similar grade of lactose as in REF
- Similar XRPD, PSD, DD, APSD etc.

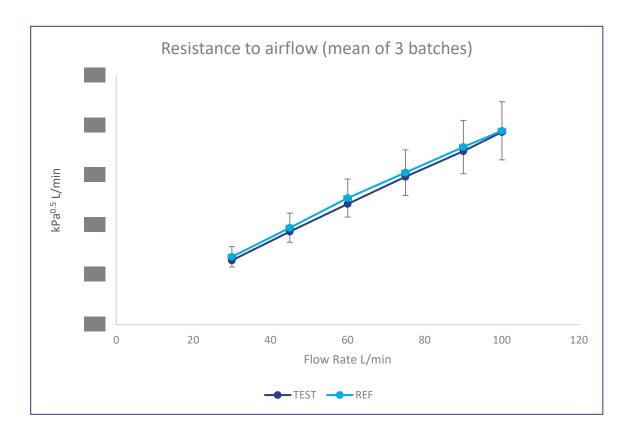
SEM:

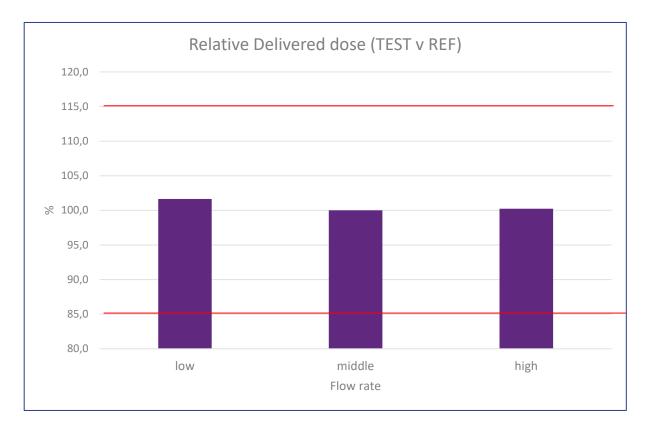


REF

TEST

Case study - in-vitro comparison (3)

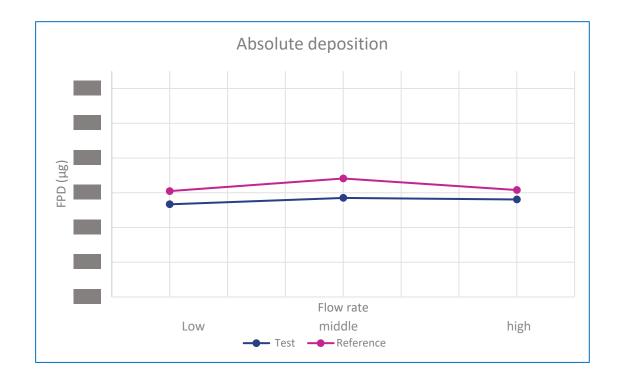

- 5. Any qualitative and/or quantitative differences in excipients should not change the safety profile of the product
- → No significant differences demonstrated
- 6. The **inhaled volume through the device** to enable a sufficient amount of active substance into the lungs should be similar (within +/- 15%)
- → Proposed device with same mechanism of de-agglomeration and equivalent resistance
- 7. **Handling** of the inhalation devices for the test and the reference products in order to release the required amount of the active substance should be similar
- → Handling similar to REF except for the way the capsule is punctured
- → No impact on DD

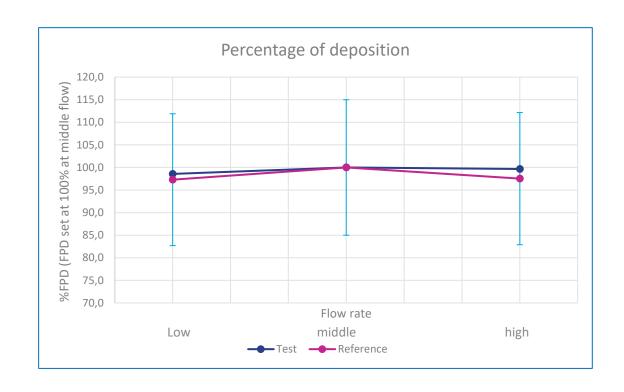

Case study - in-vitro comparison (4)

8. The inhalation device has the same **resistance to airflow** (within +/- 15%)

→ Resistance to airflow "sameness" demonstrated

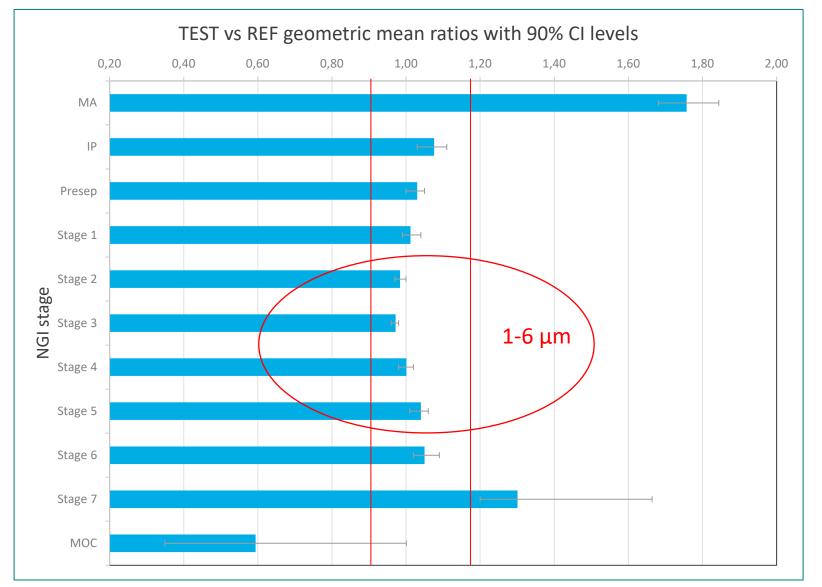
9. The **target delivered dose** should be similar (within +/- 15%)

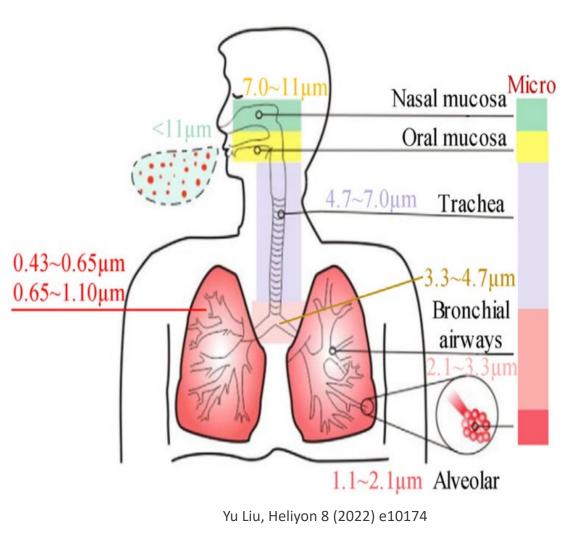



→ Similar DD demonstrated across minimum (10th percentile), median and maximum (90th percentile) achievable flow rate in the target patient population

Case study - in-vitro comparison (5)

Flow rate (FR) dependency of dry powder inhalers




- No FR dependency demonstrated
- Point estimate of FPD of TEST within ± 15% of REF for each tested FR
- PK data (if applicable) can be obtained in healthy volunteers

Case study - in-vitro comparison (6)

Data from the complete particle size distribution profile of individual and grouped stages of a validated multistage impactor...

- The equivalence at all FR fulfilled (CI within 0.85-1.18), except mouthpiece, stage 7 and MOC
- These stages, in particular stage 7 and MOC are characterized by small deposition and high variability
- Deposition comparable on stages represented by particles of 1-6 μm (considered as clinically relevant)

Case study - in-vitro comparison (7)

The comparison should be performed per impactor stage or justified group of stages...

Group	Respective parts of human respiratory tract	T/R geometric mean ratio (middle flow rate)	CI lower	CI upper	Equivalence
Level 1	Oral cavity, Swallow fraction	1.106	1.097	1.113	YES
Level 2	Larynx, pharynx, primary bronchi	0.978	0.974	0.981	YES
Level 3	Bronchi, bronchioles	1.018	1.009	1.027	YES
Level 4	Alveoli	0.963	0.912	1.019	YES

- 4 groups were proposed representing major parts of human respiratory tract
- The equivalence at each group (at all flow rates) was demonstrated (CI within the 0.85-1.18)
- No pre-specified protocol was available → Step 2 (PK) was initiated

Updated Quality guideline (Rev 1) – major changes for DPIs

API	Complete description of micronisation process with in-process controls
Pharmaceutical development	 3 batches of DP with at least 10 inhalers/units from each batch UDD and FPD over patient flow rate: FR 30-90 L/min or pressure drop 2-6 kPa Re-priming tested on worst-case scenarios Effect of environmental moisture: 25°C/70% RH or higher humidity specifically mentioned For capsule based DPIs lower humidity (e.g., 35% RH or 40% RH) to be tested Simulation of dropping from EMA Q&A
Manufacture	 Conditioning time before batch release to be specified For combination products yield of the final assembling step to be reported
Excipients	Requirements for novel excipients defined
Specification - FPD	 Validated alternative to multistage impactor (AIM – abbreviated impactor method) Specification range ±25% from EMA Q&A
Container Closure system	 Pictures to be provided Reference to MDR Reference to Guideline on the quality requirements for drug device combination products
Lifecycle management	Examples of significant changes provided

Updated OIP guideline (Rev 2) – key updates for in-vitro comparisons

- Stepwise approach officially required
- The core in-vitro criteria remain unchanged with some overlapping requirements being removed
- APSD requirements specified:
 - Grouping limited to stages with low deposition (<5% of DD)
 - Non-sized fractions (e.g. IP/Presep) can be one group
 - At least four groups with defined cut-off (non-overlapping, NMT 3 stages in 1 group)
 - Similarity concluded if the 90% CI for the observed ratio of the geometric means of TEST and REF within the acceptance limit of ±15%, assuming log-normal distribution of data (85-118%)
 - Not meeting the acceptance criteria at some stages/groups acceptable in exceptional cases, but the number of samples should be sufficient to minimise the risk for Type II-error.
- DPIs flow rate dependency (FRD):
 - Resistance ±15% vs REF: comparison at 3 pressure drops (2-6 kPa) or 3 FR
 - Resistance >15% vs REF: comparison at 3 pressure drops (2-6 kPa)
 - Two types of graphs required for FPD vs pressure drops/FR
 - If dependency of TEST > REF: additional PK data with trained healthy volunteers or patients

Conclusions

Updated guidelines:

- Stepwise approach confirmed
- No revolutionary changes for DPIs however each case requires separate evaluation
- DPIs previously developed by Polpharma meet the latest requirements

Case study:

- Extensive development carried out with QTPP and CQA defined
- All studies performed acc. to the Quality guideline and OIP guideline
- Multiple REF batches tested and representative batches selected for in-vitro studies
- APSD comparable on group of stages but not on every single stage
- At the end of step 1 the Applicant concluded that TE needs to be supported by PK studies (step 2)
- PK studies confirmed BE!

→ Define your TE acceptance criteria in advance (pre-specified protocol) and stick to them!

Thank You!

